ورود کاربر     مرا با یاد داشته باش؟
 + ثبت نام

مقالات تصادفی
Chemical and Technical Assessment 61st JECFA
1 (1)
QUILLAIA EXTRACTS
Type 1 and Type 2
Chemical and Technical Assessment (CTA)
First draft prepared by Silvia Resnik
© FAO 2004
1. Summary
Quillaia extracts (synonyms: quillaja extracts, bois de Panama, Panama bark extracts, quillai extracts, Quillay bark
extracts, soapbark extracts) are obtained by aqueous extraction of the milled inner bark or wood of pruned stems and
branches of Quillaja saponaria Molina (family Rosaceae), which is a large evergreen with shiny, leathery leaves and a
thick bark, native to China and several South American countries, particularly Bolivia, Chile and Peru. The word
“quillay” is derived from the native Mapuche word “quillean” that means “to wash”.
Quillaia extract (Type 1) contain over 100 triterpenoid saponins, consisting predominantly of glycosides of quillaic
acid. Polyphenols and tannins are also major components. Some simple sugars and calcium oxalate are also present.
Quillaia extract (Type 1) is treated with “stabilizing agents” such as egg albumin and polyvinylpyrrolidone and then
filtered through diatomaceous earth. The stabilizing agents remove substances that would probably precipitate during
storage, such as protein–polyphenol complexes. After filtration, the liquid is concentrated, and the concentrate may be
sold as such or be spray–dried and sold as a powder containing carriers such as lactose and maltodextrin.
Quillaia extract (Type 2) is produced by subjecting Quillaia extract (Type 1) to ultra-filtration or affinity
chromatography to remove unwanted solids, such as polyphenols and has higher saponin concentrations and better
emulsifying properties than Quillaia extract (Type 1).
Quillaia extract (Type 1) contain 20-26 % g of saponins, whereas Quillaia extract (Type 2) generally contain 75-90 %
of saponins.
The Quillaia extracts (Type 1 and 2) are used in food applications, primarily for their foaming properties. Moreover,
many products can be diluted with high amounts of carriers such as lactose, maltodextrin or maltitol, reducing
significantly their saponin concentration. Depending on the manufacturing process, some extracts may contain
preservatives.
2. Description
QE (synonyms: quillaja extracts; bois de Panama, Panama bark extracts, quillai extracts, Quillay bark extracts, soapbark
extracts, C.A.S. Nª 68990-67-0, INS Nª 999.) are obtained by aqueous extraction of the milled inner bark or wood of
pruned stems and branches of Quillaja saponaria Molina (family Rosaceae), which is a large evergreen with shiny,
leathery leaves and a thick bark, native to China and several South American countries, especially Bolivia, Chile and
Peru. The word “quillay” is derived from the Mapuche word “quillean” that means “to wash”.
Quillaia saponins are structurally different from the saponins derived from other plant species. Two structural features
that distinguish Quillaja saponaria saponins from those of other plant species are a fatty acid domain and a triterpene
aldehyde at carbon 4 of the triterpene (Kensil et al., 1995). The chemical structures of the Quillaia saponins are highly
complex with many opportunities for diversity. Reverse phase-high performance chromatography (RP–HPLC) has
revealed up to 30 components in preparations of Quillaia saponins, such as Quil A (So et al., 1997). It is likely that the
true number of variants would exceed 100 if all conformational isomers were considered (Barr et al., 1998). Higuchi et
al. (1988) carried out the first complete structural analysis of a Quillaia saponin, which they designated QSIII (Fig. 1).
QSIII was shown to be identical to QS-17 (Jacobsen et al., 1996) as described by Kensil et al. (1988), based on
chromatographic and carbohydrate analyses. A list of the most studied purified saponins, their synonyms and some of
their features are summarized in Table 1.
Chemical and Technical Assessment Quillaia extracts 61st JECFA
2 (9)
Table 1. The most studied saponins from Quillaja saponaria Molina.
Name Synonym Molecular weight
QSIII QS-17, QA-17 2296
QS-7 B4B, QA-7 1862
QS-18 Quadri 1, B3, QA-18 2150
QS-21 Quadri 2, B2, QA-21 1988
DS-1 (Obtained by mild alkaline hydrolysis) QS21H, Quadri2A 1590
DS-2 (Obtained by mild alkaline hydrolysis) QS18H, Quadri 1A 1752
QS-957 (Obtained by strong alkaline
hydrolysis)
Quadri 1B or 2BQS-L1 957
(Adapted from Higuchi et al., 1987 and 1988; Kensil et al, 1988; 1991 and 1992; Dalsgaard et al., 1995; Cleland et al.,
1996; So et al., 1997)
Quillaia saponins have a five-ringed quillaic acid backbone with small carbohydrate chains, consisting of two to five
sugar units, attached at the 3´ and 28´ carbons of quillaic acid and are frequently branched (Bomford et al., 1992).
Attached to the fucose first sugar unit at the 28´ position of the carbohydrate chain is an 18 carbon acyl chain with a
small carbohydrate chain at its terminal end, which consists of one or two sugar units (Figure 1, Table 2). The molar
relation between monosaccharide and saponins in some Quillaia saponins is shown in Table 3.
Figure 1: Molecular structures of saponins described on table 1
Table 2: Molecular structures of some saponins from Quillaja saponaria Molina. (adapted from van Setten and
van de Werken, 1996)
Saponin R1 R2 R3 R4 R4´ R5 X
DS-1 β-D-Xylp β-D-Apif -H -H -H absent absent
DS-2 β-D-Xylp β-D-Apif β-D-Glcp -H -H absent absent
QS-7 ** ** ** ** ** ** **
QS-17 β-D-Xylp β-D-Apif β-D-Glcp Figure 1 -H α-L-Rhamp absent
QS-18 β-D-Xylp β-D-Apif β-D-Glcp Figure 1 -H -H absent
QS-21 β-D-Xylp β-D-Apif -H Figure 1 or –
H
-H -H absent
QS-21 V1 β-D-Xylp β-D-Apif -H Figure 1 -H -H absent
QS-21 V2 β-D-Xylp β-D-Apif -H Figure 1 -H -H absent
** linkage not found
Chemical and Technical Assessment Quillaia extracts 61st JECFA
3 (9)
Table 3: molar relation between monosaccharide and saponins in major saponins from Quillaja saponaria
Molina
Monosaccharides Saponin
QS-7 QS-17 QS-18 QS-21
Rhamnose 2.22 2.34 1.15 1.27
Fucose 0.90 0.96 0.88 0.91
Arabinose Trace 0.98 0.74 0.77
Xylose 1.28 1.33 1.34 1.44
Galactose 1.00 1.00 1.00 1.00
Glucose 1.35 1.23 1.16 0.35
Glucuronic acid 0.65 0.64 0.72 0.74
For some QE, isolated fractions have been found to contain more than one saponin. In particular, Quil A could be
divided in three fractions after purification by RP–HPLC. The first fraction eluting was designated QH-A while two of
the more hydrophobic fractions eluted later and were designated as QH-B and QH-C (Rönnberg et al., 1995).
The major points of chemical diversity are related to: a branched carbohydrate at the C 3 position; the carbohydrate
chain at C 28; the nature of attachment of the acyl chain to fucose; the length of the acyl chain; the carbohydrate
moieties on the acyl chain; and the active aldehyde at C 4 on the quillaic acid.
The branched carbohydrate at the C 3 position was thought to be a constant feature. However, Guo et al. (1998)
identified two structures in which xylose is either absent or replaced with rhamnose. These were isolated from QH-A or
from a mixture of QH-A and QH-C after strong alkaline hydrolysis. The three variants were present in approximately
equal quantity. Although the disaccharide might possibly be a breakdown product, the replacement of a pentose with a
deoxyhexose must occur during synthesis.
Considerable variation has been reported in the carbohydrate chain at C 28 of the quillaic acid. Kensil et al. (1993a, b)
and Soltysik et al. (1993, 1995) identified QS-21-V1 and QS-21-V2 as two different compounds which were copurified
by RP–HPLC (Kensil et al., 1988) but also could be separated by hydrophilic interaction chromatography. Cleland et al.
(1996) found a tetra-saccharide chain terminating with either apiose in QS-21-V1 or xylose in QS-21-V2.
The acyl chain to fucose was initially identified (Higuchi et al., 1988) as a 3´ attachment for QSIII and subsequently
presumed to be the same for QS-18 and QS-21 (Kensil et al., 1992). More recently, two regioisomers, QS-21A and QS-
21B with 4´ and 3´ attachment, respectively, have been described. These two isomers can be separated by RP–HPLC
(Cleland et al., 1996; Jacobsen et al., 1996).
Higuchi et al. (1987) prepared a semi-purified Quillaia saponin mixture, which showed seven spots by HP-TLC, that
then are subjected to mild alkaline hydrolysis (6% NH4HCO3 in 50% methanol) to yield two products, DS1 and DS2.
These fractions are identical to QS-21H, or Quadri-2A, and QS-18H, or Quadri-1A, respectively (Kensil et al., 1988;
Dalsgaard et al., 1995). These structures result from ester hydrolysis and differ only by the presence, or absence, of
glucose. DS-1 and DS-2 can also be identified in Quil A (Dalsgaard et al., 1995). The chemical characterization of QS-7
has not yet been described. However, its molecular weight of about 1870 (Kensil et al., 1993a), its substantially reduced
hydrophobicity (Kensil et al., 1991) and lack of arabinose (Kensil et al., 1988) suggest it may be a partially deacylated
QSIII or QS-18 with a hydrolysable ester function at position 3 (Fig. 1). Hydrolysis of this ester bond was described by
Higuchi et. al (1987).
QS-17 has two carbohydrate molecules, QS-18 and QS-21 have one whilst QS-7 lacks any carbohydrate on the acyl
chain.
Saponins are commercially obtained from four major sources: Smilax ornata (sarsaparilla), Gypsophilla paniculata
(brides veil), Saponaria officianalis (soap root) and Quillaia saponaria Molina (soap bark). However, saponins
obtained from Quillaja saponaria Molina alone or mixed with other low-cost saponin sources (eg Yucca shidigera
extracts), are the most frequent compounds employed as food additives (San Martín, R. and Briones, R., 2000).
3. Manufacturing
For over 120 years QE have been produced from the aqueous extraction of the bark of Quillaja saponaria Molina tree
belonging to the family Rosaceae. The wood is obtained from pruning operations (branches, limbs) that improve the
quality of existing forests, without the need for deforestation.
Chemical and Technical Assessment Quillaia extracts 61st JECFA
4 (9)
Method of manufacture
Historically, saponins are extracted mainly from the bark. Prior to debarking, the external part of the bark is removed
with knives from the bark extract. The saponin content of bark is approximately 5 % w/w. By treating bark with hot
water (70o-80o) 20 -25 % of extractives (w/w dry) can be obtained, with a saponin content in the extracted solids of
about 20% (Kensil, 1996).
The ecological damage caused by the deforestation has stimulated the research on the use the whole quillaja wood
(wood with bark, small branches), as a more stable supply of saponins. Whole wood contains about 8% water soluble
compounds, with saponin content in the solids of 20 % (determined by RP-HPLC). The quality of the products derived
from whole wood is as good as the commercial products derived from bark (San Martín et al, 1999).
QE are primarily commercialized with very little purification. Standard liquid products are prepared using water
extraction after the raw material has been adequately milled. Following extraction, the liquid may be concentrated by
evaporation to attain the desired concentration of solids. In some cases it is also necessary to purify the extract (e.g., by
treatment with activated charcoal, filtration) to remove compounds that tend to precipitate during storage. The final
products contain saponins, protein, tannins, calcium oxalate and sugars.
Hostettmann and Martson (1995) report that aqueous ethanol is used by Japanese companies to attain products of high
purity. Wall and Rothman (1957) mentioned a process for extracting saponins by adding alcoholic solution as a solvent,
then distilling off the solvent, acidifying and heating. In general, QE are produced with three different degrees of
purification:
Quillaia extract (Type1). These products contain all water-soluble solids. The production process consists only of
treatment with stabilizing agents (e.g. egg albumin, PVP), followed by filtration with diatomaceous earth to remove
compounds that tend to precipitate during storage (e.g. protein-polyphenol complexes). They are commercialized as
concentrated liquids (normally 550 g/l solids) or spray dried powders, with preservatives as sodium benzoate (~0.5 g/l)
or ethanol. The products have a typical red brownish color; however some extracts are bleached chemically to produce
light color products. Quillaia extract (Type 1) contain 20-26 % saponins.
Quillaia extract (Type 2). These products are purified with ultrafiltration membranes or affinity chromatography to
remove most non-saponin solids, such as calcium oxalate, sugars, tannins, polyphenols, etc. that may interfere in terms
of color, chemical interactions, taste, and odor (Ogawa and Yokota 1985; Ogawa and Murakami 1987). They have a
light color and are not bleached chemically. They have a higher saponin concentration than the quillaia extract(Type 1).
Quillaia extract (Type 2) contain 75-90 % saponins.
Highly purified extracts. These products are used as adjuvants in the production of animal vaccines and not as food
additives. They are purified using ultrafiltration membranes, followed by column adsorption to remove polyphenols.
Other commercial forms of QE: Many products are diluted with high amounts of carriers such as lactose, maltodextrin
or maltitol, reducing significantly their saponin concentration. The quality of the final extracts is evaluated in terms of
their clarity and color in solution and saponins content, as well as for their foaming properties (San Martín et al, 1999).
Young plants, less than 15 years old, exhibit less heterogeneous saponins profiles than those obtained from mature
extracts (Barr et al, 1998). A screening of the extracts obtained from thirty different natural, not cultivated, trees was
performed by Kamstrup et al(2000) identified two separate profiles in this random group of isolates of which one
(profile A), showing two predominant saponin peaks, appeared to be a subset of the other (profile B). Both profile A
and profile B were observed each in 50% of the trees sampled. The comparison with a saponin profile of a commercial
extract revealed that the latter displayed a mixture of both profiles. This mixed profile was attributed to the mixing of
barks from both tree types during processing. The observed variation of the saponin profiles between trees was
attributed by the authors to genetic factors, as neither soil, altitude, or age of trees or sampled tissues correlated to the
composition of saponins; in addition they observed that trees from the same location could display different profiles.
(Kamstrup et al., 2000) study on the variability of saponins in quillaia extracts. In search of plant varieties that exhibit a
specific saponin spectrum. For the two major peaks present in profile A the authors showed that those were identical
with the saponins QS-18 and QS-21 which had been described ten years earlier (Keslin at al, 1990). Long-term storage
may also lead to oxidative or other changes in the product composition (Kamstrup et al, 2000)
Other potential sources of Quillaia saponins : Dalsgard and Henry (1998) proposed that the quillaia saponins can be
produced by cells culture of several species of Quillaia such as Quillaja saponaria, Quillaja smegmadermos and Quillaja
brasilensis .
4. Characterization
The existence of many different saponins, which vary in their chemical or biological activities, makes the
characterization of QE difficult. The variable content of the individual saponins in QE also contributes to the difficulty
of characterizing them. Fuller characterization requires identification of individual saponins to assess the quality, purity
and toxicity of QE. In practice, the identification and quantification of the major saponins, QS-7, QS-17, QS-18 and
QS-21, are adequate to express the saponins content of QE, because they represent up to 90 % of total saponins content.
Chemical and Technical Assessment Quillaia extracts 61st JECFA
5 (9)
The saponins content and identification of unpurified, semi-purified and highly purified QE can be performed by RPHPLC.
At least 22 peaks (denominated QS-1 to QS-22) are separable. The individual components were identified by
retention time on a Vydac C4 HPLC column (Kensil and Marciani, 1991; San Martín and Briones, 2000). The major
saponins, purified by HPLC and low pressure silica chromatography, were found to be adjuvant active, although they
differ in biological activities such as hemolysis and toxicity in mice. In particular, QS-21 and QS-7 were found to be
less toxic in mice. More recently, QS-21 was further purified using hydrophilic interaction chromatography (HILIC)
and was resolved into two peaks, QS-21-V1 and QS-21-V2, which have been shown to be different compounds (Kensil
et al., 1991).
Carbohydrate content can be used to quantify the saponins in some instances. Scott and Melvin developed a method for
determining the carbohydrate concentration of saponins (Kensil et al., 1991). The carbohydrate concentration can be
estimated by use of an anthrone assay, where a ratio of extent of anthrone reaction is expressed in glucose equivalents
per mg of purified saponin (dry weight). Differences in reactivity with anthrone for different saponins may result from
differences in carbohydrate composition rather than from differences in the relative amounts of the individual
monosaccharide. Therefore, this methodology is not accurate enough to quantify commercial products.
Most saponin adjuvants are known to have detergent properties, such as the ability to hemolyze red blood cells. So, the
retention of hemolytic activity is a rough indication of the retention of adjuvant saponins.
Quillaia extracts (Type 1and 2) have been reported to contain as minor components: water soluble polyphenols, tannins,
sugars and others compounds. Some polyphenols are removed during the production process, but an important fraction
remains and imparts the characteristic deep reddish-brown color of aqueous quil1aia solutions. Tannins can be
determined gravimetrically by adsorption with polyvinyl polypyrrolidone (PVPP). The method is based on weighing the
extract before and after treatment with PVPP and removal of the PVPP by centrifugation (Makkar et al, 1992). Typical
values are not more than 8 % tannins on a dried basis. For quillaia extracts (Type 1) total sugars do not exceed 32 % (on
the dried basis determined by the cupric ion test)and for quillaia extracts type 2: 5% on the dried basis.
Other minor components can be determined by chemical analysis but Nitrogen content is about 1 % (on a dried basis),
while fat content is about 5% (on a dried basis). The fat content might be due to the presence of wood resins, since the
extraction is normally performed at 70-80 °. The literature also reports the presence of starch (Leung and Foster, 1996;
Wichtl, 1994).
QE foam abundantly when shaken in water. This property is critical for characterizing the product. However, it does not
necessarily guarantee the purity of the product, since similar foam levels can be attained by mixing QE with other low
cost saponin sources such as extracts of the Mexican plant Yucca schidigera (San Martín and Briones, 2000). Typical
values have been reported for quillaia extracts type 1: 150ml and for type 2: 260 ml of foam
Current industrial practices require that QE do not exhibit precipitates or turbidity when diluted in water. Most
manufacturing processes include a preliminary purification step to avoid the possibility of precipitation. Specifications
for QE (FNP 52/add 9) have a limit for color (determined at 520 nm) to ensure that food colors are not affected.
Normally, light colored QE are preferred, not more than 1.2 for quillaia extract type 1 and not more than 0.7 for
quillaia extract type 2.
The pH of fresh aqueous QE is between 5 and 5.5. However, for concentrated liquid extracts, a common industrial
practice is to adjust the pH between 3.7-3.9 with phosphoric acid and to use sodium benzoate as a preservative, which
exhibits optimum performance at a PH below 4.
Specifications for quillaia extract Type 1 (FNP 52/add 9) contain a limit of no greater than 14 % ash on the dried basis
This rather high limit is in recognition of the typically high levels of calcium oxalate in the extract (about 11% by
weight, Lueng and Foster, 1996). A quillaia extract Type 2, as a more purified extract contain not more than 5% on a
dried basis.
Young plants, less than 15 years old, exhibit less heterogeneous saponins profiles than those obtained from mature
extracts (Barr et al, 1998). A screening of the extracts obtained from thirty different natural, not cultivated, trees was
performed by Kamstrup et al. (2000) identified two separate profiles in this random group of isolates of which one
(profile A), showing two predominant saponin peaks, appeared to be a subset of the other (profile B). Both profile A
and profile B were observed each in 50% of the trees sampled. The comparison with a saponin profile of a commercial
extract revealed that the latter displayed a mixture of both profiles. This mixed profile was attributed to the mixing of
barks from both tree types during processing. The observed variation of the saponin profiles between trees was
attributed by the authors to genetic factors, as neither soil, altitude, or age of trees or sampled tissues correlated to the
composition of saponins; in addition they observed that trees from the same location could display different profiles.
(Kamstrup et al., 2000) study on the variability of saponins in quillaia extracts. In search of plant varieties that exhibit a
specific saponin spectrum. For the two major peaks present in profile A the authors showed that those were identical
with the saponins QS-18 and QS-21 which had been described ten years earlier (Keslin at al, 1990). Long-term storage
may also lead to oxidative or other changes in the product composition (Kamstrup et al, 2000).
Chemical and Technical Assessment Quillaia extracts 61st JECFA
6 (9)
Information on QE for the 61st JECFA were submitted by manufacturers from different countries and cover more than
60% of the world production.
Table 4 summarizes information on various commercial preparations which compare the composition declared by the
producer to the sum of the four principal saponins (QS-7, QS-17, QS-18 and QS-21) determined by HPLC. (San
Martin and Briones, 2000).
Table 4. Commercial quillaia extracts analyzed by RP-HPLC
YE: Yucca extract
Assays of QE are typically based on the sum of the contents of the four major saponins: QS-7, QS-17, QS-18 and QS-
21. Reference values are expressed as follows: Saponin content of quillaia extract (Type 1) not less than 20 % and not
more than 26 % on the dried basis, and semi-purified, quillaia extract (Type 2) not less than 75 % and not more than 90
% on the dried basis.
5. Functional use
Quillaia saponins have a wide range of industrial applications. The interest in these compounds has increased
significantly in recent years because of their properties as foaming agents in beverages and emulsifiers in foods, as well
as their applications in cholesterol-reduction and flavor enhancement (Murakami, 1988, 1996; Chino and Wako, 1992;
Waller and Yamasaki 1996 a, b; San Martin and Briones, 1999).
The term “food grade” saponin is widely used by manufacturers and it is defined as any grade or preparation of saponin
which is approved for use in food and beverages under the United States Food and Drug Administration (FDA)
regulation 21 CFR 172.510. QE are FEMA GRAS with FEMA number 2973. In the European Union QE are approved
for addition to water-based non-alcoholic drinks, cider, excluding “cidre bouché” and may be labeled as E999. In Japan
QE are allowed for human consumption (as emulsifier and foaming agent) and for use in cosmetics. The C.A.S.
number is 68990-67-0
The General Standard on Food Additives (GSFA) of the Codex Alimentarius Commission lists QE as suitable for use
as a foaming agent in ‘Water-based flavoured drinks’, including ‘sport’ or ‘electrolyte’ drinks and particulated drinks
(GSFA category 14.1.4, 500 mg/kg maximum use level, at Step 6 in the Codex process).
In soft drinks, unpurified QE are commonly used at concentrations up to 200 mg/kg (Mukai et al, 1993, Nayyar et al.
1998). In addition to minor uses in some soft drinks where slight foaming is desirable, e.g. root beers, QE are most
commonly used in making dispensable frozen carbonated beverages (FCBs) or uncarbonated juice products (e.g., frozen
lemonades). The used levels of QE in syrups intended for dispensable frozen beverages (FCBs) or frozen lemonades is
higher than in other beverages, therefore the maximum required level to achieve the technological effect in these
products may be up to 500 mg/kg on dry solid basis (International Soft Drinks Council, personal communication, 2003).
Quillaia saponins can be used in cider, cream soda, cocktail mixes, baked goods, candies, frozen dairy products,
gelatine and puddings. They can also be used for the production of low-cholesterol dairy food products (Richardson and
Jimenez-Flores 1991; Sundfeld, et al. 1994) and microemulsions (Kudo and Nishi, 1992). Some industrial applications
include the production of mayonnaise (Maeda et al. 1989), enhancement of oil-soluble flavors for candies (Toya et al.,
1994), dissolving of propolis (Kawai et al., 1994) and red coloring material (Oono and Higashimura, 1995), for soy
sauce (Murakami and Watanabe, 1988a) and whipping cream (Murakami and Watanabe, 1988b). Other functional uses
are mentioned in the References as antioxidants (Hisayuki and Takashi 1987; Kooryama and Chiba 1996) and leavening
agents (Watanabe et al. 1989).
Chemical and Technical Assessment Quillaia extracts 61st JECFA
7 (9)
6. Reactions and fate in foods
Mitra and Dungan (1997, 2000) report some physicochemical properties of QE. The interaction of Quillaia saponins
and cholesterol in foods result in the formation of monolayer and micelles, whose critical micelle concentration (CMC)
depends on the salt concentration and temperature (Mitra and Dunga, 2000). Based on the ability of saponin micelles to
form insoluble aggregates with cholesterol, Quillaja saponins can be used for the production of low-cholesterol dairy
food products (Richardson and Jimenez-Flores 1991; Sundfeld et al, 1994).
7. References
Barr , I.G., Sjolander, A. &. Cox, J. C. 1998. ISCOMs and other saponin based adjuvants. Adv. Drug Deliver. Rev.,
32: 247–271.
Bomford, R., Stapleton, M., Winsor, S., Beesley, J.E., Jessup, E.A., Price, K.R. & Fenwick, G.R. 1992.
Adjuvanticity and iscom formation by structurally diverse saponins. Vaccine, 10: 572–577.
Brennan, F. & Hamilton, W. 2001. Food Grade Saponins as Oral Adjuvants. PCT International Application Number:
PCT/GB00/03492. International Publication number: WO 01/17555 A2.
Chino, Y., & Wako, M. 1992. Manufacture of transparent emulsions for foods and beverages. JP 04 51,853.
Cleland, J.L., Kensil, C.R., Lim, A., Jacobsen, N.E., Basa, L., Spellum, M. Wheeler, D.A., Wu, J.-Y. &. Powell,
M.F. 1996. Isomerization and formulation stability of the vaccine adjuvant QS-21. J. Pharm. Sci., 85: 22–28.
Dalsgaard, K., Henry, M., San Martin Gamboa, R.M., Grande, H.J. & Kamstrup, S. 1995. Compounds with
adjuvant activity. Patent application WO 95/09179.
Dalsgard, K. & Henry, M. 1998. Cultured Cells of Quillaja sp.U.S. Patent 5,716,848
Guo, S., Kenne, L., Lundgren, L.N., Ronnberg, B. & Sundquist, B. 1998. Triterpenoid saponins from Quillaja
saponaria. Phytochem. 48:175-180.
Higuchi, R., Tokimitsu, Y., Fujioka, T., Komori, T., Kawasaki, T. & Oakenful, D.G. 1987. Structure of
desacylsaponins obtained from the bark of Quillaja saponaria. Phytochem., 26: 229–235.
Higuchi, R., Tokimitsu, Y. & Komori T. 1988. An acylated triterpenoid saponin from Quillaja saponaria.
Phytochem., 27: 1165–1168.
Hisayuki, K., & Takashi, I. 1987. Antioxidant. JP 62243681 A.
Hostettmann, K. &. Martson A. 1995. Saponins, Cambridge University Press, UK.
Jacobsen, N.E., Fairbrother, W.J., Kensil, C.R., Lim, A., Wheeler, D.A. & Powell, M.F. 1996. Structure of the
saponin adjuvant QS-21 and its base-catalysed isomerization product by 1H and natural abundance 13C NMR
spectroscopy. Carbohydr. Res., 280: 1–14.
Kamstrup S., San Martin R., Doberti A., Grande H. & Dalsgaard K. 2000. Preparation and characterisation of
quillaja saponin with less heterogeneity than Quil-A. Vaccine ,18: 2244-2249.
Kawai, M., Hirashita, N. & Kanae, J. 1994. Manufacture of propolis compositions for health foods. JP 94 197734.
Kensil, C. & Marciani, D. 1991. Saponin adjuvant. U.S. patent 5,057,540.
Kensil, C.A., Marciani, D.J., Beltz, G.A & Hung, C.H. 1988. Saponin adjuvant. Patent application WO 88/09336.
Kensil, C., Patel, U., Lennick, M. & Marciani, D. 1991. Separation and characterization of saponins with adjuvant
activity from Quillaja saponaria Molina cortex. J. Immunol. 146: 431–437.
Kensil, C.A., Soltysik, S., Patel, U. & Marciani, D.J. 1992. Structure / function relationship in adjuvants from
Quillaja saponaria Molina. In F.Brown, R.M. Channock, H.S. Ginsberg & R.A. Lerner. eds. Cold Spring Harbor Press,
pp. 35–40. Cold Spring Harbor, New York.
Kensil, C., Soltysik, S. & Marciani, D. 1993a. Enhancing drug delivery with modified saponins. U.S. patent 5273965.
Kensil, C.A., Soltysik, S. & Marciani, D.J. 1993b. Saponin-antigen conjugates and the use thereof. Patent
application. WO 93/05789.
Kensil, C., Soltysik, S. & Marciani,D.1996. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug , 13: 1-55.
Kensil, C., Wu, J-Y. & Soltysik, S. 1995. Structural and immunological characterization of the vaccine adjuvant QS-
21. In M. F. Powell & Newman M. J., eds., Vaccine Design: the subunit adjuvant approach. pp. 525–541. Plenum Press,
New York.
Kooryama, T., & Chiba, I. 1996. Oxidation-stable emulsions of oil and fats with transparent appearance and food
Chemical and Technical Assessment Quillaia extracts 61st JECFA
8 (9)
containing them. JP 9651928 A2.
Kudo, S, & Nishi, E. 1992. Surfactant and method for producing the same. U.S. patent 5,152,928.
Leung, A. & Foster, S. 1996. Encyclopedia of Common Natural Ingredients used in food, drugs and cosmetics. 2nd
Edition. Jhon Whiley & Sons (USA), pp.432-433.
Maeda, K., Tanada, T. & Akita, S. 1989. Manufacture of improved mayonnaise. JP 01,108,956.
Makkar, H.P.S., Blümmel, M., Borowy, N.K. & Becker, K. 1992. Gravimetric Determination of tannins and their
correlations with chemical and protein precipitation methods. J. Sci. Food Agric, 61: 161-165.
Mitra, S., & Dungan, S. R. 1997. Micellar properties of quillaja saponin. 1. Effects of temperature, salt and pH on
solution properties. J. Agr. Food Chem. 45: 1587-1595.
Mitra, S., &. Dungan, S. R. 2000. Micellar properties of quillaja saponin. 2. Effect of solubilized cholesterol on
solution properties. Colloids and Surfaces B: Biointerfaces, 17: 117-133.
Mukai, S., Matusuda, T. & Kanazawa, Y. 1993. Manufacture of foaming beverages with saponins, saccharides and
carbon dioxide. JP 05 38,275.
Murakami, F. & Watanabe, T. 1988a. Production of emulsified fat and oil-containing soy sauce. JP 63 233761
Murakami, F. & Watanabe, T. 1988b. Manufacture of stabilized cream using quillaja saponin. JP 63,109,735.
Murakami, F. 1988. Emulsifying properties of quillaja saponins. Gekkan Fudo Kemikaru 4:47-53.
Murakami, F 1996. Properties and applications of food emulsifiers. Saponins. Bessatsu Fudo Kemikaru 8: 52-56.
Nayyar, D., Schulok, W., Saleeb, F. & Modesta, E. 1998. Dry mix for producing a slush beverage. U.S. patent
5,853,785.
Ogawa, S., & Murakami. F. 1987. Saponin purification. JP 62, 10,628.
Ogawa, S., & Yokota, T. 1985. Surfactants. JP 60,190,224.
Oono, T., & Higashimura, Y. 1995. Method for manufacturing of red coloring material. JP 9590188 A2.
Pillion, D.J., Amsden, J.A., Kensil, C.R. & Recchia, J. 1996. Structure- function relationship among Quillaja
saponins serving as excipients for nasal and occular delivery of insulin, J. Pharm.Sci., 85: 518–524.
Richardson, T., & Jimenez-Flores, R. 1991. Saponin extraction of cholesterol from diary products. PCT International
Application WO 91 05,836.
Rönnberg, B., Fekadu & Morein, M. B. 1995. Adjuvant activity of non-toxic Quillaja saponaria Molina components
for use in ISCOM-Matrix. Vaccine, 13: 1375–1382.
San Martín, R. & Briones, R. 1999. Industrial Uses and Sustainable Supply Quillaja saponaria (Rosaceae) saponins.
Econ. Bot., 53:302-311
San Martín, R. & Briones, R. 2000. Quality control of commercial quillaja (Quillaja saponaria Molina) extracts by
reverse phase HPLC. J. Sci. Food Agric., 80: 2063-2068.
So, H.S., Yoon, H.S., Choi, D.Y. Kwon, Y.S., Sung, J.H., Lee, T.G., Park, E.S. Cho, H.S, Lee, B.M.. Cho, J.M. &
Ryu W.S. 1997. Effect of a novel saponin adjuvant derived from Quillaja saponaria on the immune response to
recombinant Hepatitis B surface antigen. Mol. Cells, 7: 178–186.
Soltysik, S., Bedore, D.A. & Kensil, C.R. 1993. Adjuvant activity of QS-21 isomers. Ann. New York Acad. Sci, 690:
392–395.
Soltysik, S., Wu, J.Y., Recchia, J.,. Wheeler, D.A., Newman, M.J., Coughlin, R.T. & Kensil, C.R. 1995. Structure /
function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function.
Vaccine, 13: 1403–1410.
Sundfeld, E., Krochta, J.& Richardson, T. 1994. Aqueous process to remove cholesterol from food products. PCT
International Application WO 94 12,044.
Toya, C., M. Fujita, & A. Toshio. 1994. Enhancement of oil-soluble flavors in candies. JP 06 22,697.
van Setten, D. C., & van der Werken, G.. 1996. Molecular structures of saponins of Quillaja saponaria Molina. In
Waller, G. & Yamasaki, K. eds. Saponins used in traditional and modern medicine. Advances in experimental biology.
Vol. 404. Proceedings of the American Chemical Symposium on Saponins Chemistry and Biological Activity, August
22-25, Chicago, IL. Plenum Press, New York.
Wall, M.E & Rothman, E.S. 1957. Process for extracting saponins from plant tissue. U.S. patent 2,791,581
Chemical and Technical Assessment Quillaia extracts 61st JECFA
9 (9)
Waller, G. R., &. Yamasaki, K. 1996a. Saponins used in traditional and modern medicine. In Advances in
experimental biology. Vol. 404. Proceedings of the American Chemical Symposium on Saponins Chemistry and
Biological Activity, August 22-25, Chicago, IL. Plenum Press, New York.
Waller, G. R., & Yamasaki, K. 1996b. Saponins used in food and agriculture. In Advances in experimental biology.
Vol. 405. Proceedings of the American Chemical Symposium on saponins Chemistry and Biological Activity, August
22-25, Chicago, IL. Plenum Press, New York.
Watanabe, T., Murakami, F., Harada, S.& Watanabe, Y. 1989. Leavening agents contain quillaja saponin and
carrageenan for cake manufacture. JP 01 168,227.
WHO. 1982. Evaluation of certain food additives and contaminants (Twenty-sixth report of the Joint FAO/WHO
Expert Committee on Food Additives). WHO Technical Report Series, No. 683.
WHO. 1986. Evaluation of certain food additives and contaminants (Twenty-ninth report of the Joint FAO/WHO
Expert Committee on Food Additives). WHO Technical Report Series, No. 733 and corrigendum.
Wichtl, M. 1994. Herbal Drugs and Phytopharmaceuticals. pp 404-406.CRC Press, Stuttgart.

ورود
شناسه‌ی کاربری:

رمزعبور:

ورود خودکار



واژه رمز را فراموش کرده‌اید؟

عضو شوید
SmartSection is developed by The SmartFactory (http://www.smartfactory.ca), a division of INBOX Solutions (http://inboxinternational.com)
مقاله ها > 1-مقاله های فارسی > بررسی خصوصیات فیزیکی دو واریته پرتقال ایران
بررسی خصوصیات فیزیکی دو واریته پرتقال ایران
نوشته شده توسط ABDI در تاریخ ۱۳۸۹/۱۲/۲۳ (2503 بار خوانده شده)
چکیده :
از نیازهای اولیه طراحی ماشین های مربوط به فراوری میوه ها داشتن اطلاعاتی در مورد ویژگی های فیزیکی میوه ها می باشد. در این مطالعه خواص هندسی و ثقلی دو واریته پرتقال در ایران ( به نامهای تامسون ناول وسانگونلا ) با میانگین رطوبتی 7/3% مورد بررسی قرار گرفت . طول، قطر، میانگین هندسی قطر، ضریب کرویت، وزن سی میوه، حجم، دانسیته واقعی، دانسیته توده ای، تخلخل برای واریته سانگونلا به ترتیب 62/76 ، 66/55 ، 62/54 ، 99٪ ،144/33 ، 133 ، 1029/55 ، 531 ، 48 ٪ و برای واریته تامسون ناول به ترتیب: 80/73 ، 79/80 ، 76/64 ، 93٪ ، 260/29 ، 235/6 ، 1030/11 ، 492 ، 52٪. بدست آمد. واژه های کلیدی : پرتقال ، خواص هندسی ، خواص ثقلی

نویسنده مسئول:akramsharifi76@gmail.com

مقدمه
پرتقال ، از خانواده بزرگ موسوم به سیتروس است. پرتقال بعد از سیب دومین میوه ای است که در جهان مورد مصرف عموم مردم است . مرکبات حاوی املاح و سرشار از ویتامین های B, Aو P ( یک ماده ویتامین مانند) است. نزدیک به یکصد صنعت، از مرکبات در تولید فرآورده خود استفاده می کنند(3). از موارد مهم و قابل توجه در صنعت مرکبات بالابردن ارزش افزوده این محصول از طریق تولید محصولات جانبی است . این محصولات شامل مواد اولیه دارویی ، مواد غذایی ، آرایشی و بهداشتی است . اسانس پوست میوه مرکبات می تواند به عنوان محصولی جانبی در کارخانجات صنایع تبدیلی مورد توجه قرار گیرد و یا اینکه به عنوان یک محصول اصلی به طور خاص از ارقام معینی استخراج شود(4). پرتقال فراوانترین منبع ویتامین ث است. همچنین شامل مقادیر قابل توجهی قند، کربوهیدرات، فلاونوئیدها، روغن های اسانسی و مواد معدنی می باشد(11).
مصرف اکثر پرتقال ها در جهان بصورت تازه خوری،آب میوه تازه ،آب میوه پاستوریزه و کنسانتره میباشد(10). پرتقال بومی کشورهای عربی، خاورمیانه واحتمالاً جنوب چین است که کشت آن در اروپا بخصوص جنوب اسپانیا و همچنین در فلوریدا و کالیفرنیا متداول شده است(2). تولید مرکبات به شرایط آب و هوایی خاصی نیاز دارد . که این شرایط در مناطق گرم بین دو مدار 40 درجه شمالی و 40 درجه جنوبی (کمربند مرکبات) بر قرار است . مناطق عمده کاشت این کمربند در عرض جغرافیایی 20 تا 40 درجه شمالی و 20 تا 40 درجه جنوبی قرار دارند(1). برزیل و ایالات متحده بزرگترین تولید کننده پرتقال هستند که 60 درصد پرتقال جهان را تولید و 85 درصد این مقدار را فرآوری می کنند. تولید جهانی پرتقال در سال 2005 با سطح زیر کشت معادل 3598639 هکتار، مجموعاً حدود 59904874 میلیون تن بوده است(5).
میزان تولید پرتقال در ایران در سال 83 معادل 1900000 تن بوده است(7). با توجه به توسعه کشت پرتقال در آینده، افزایش میزان مصرف آن و فقدان اطلاعات علمی کافی مربوط به خصوصیات فیزیکی میوه، رعایت نکردن اصول صحیح برداشت، جابجایی، حمل و نقل و نگهداری، استفاده از تجهیزات فرآوری نامناسب، منجر به کاهش کارایی و افزایش ضایعات خواهد شد. لذا دسترسی به اطلاعات علمی پایه در رابطه با خصوصیات فیزیکی که نقش مهمی را در طراحی تجهیزات مورد نیاز کاشت، داشت، برداشت، انتقال، انبارداری و فرآیند محصول ایفا می کنند ، ضروری به نظر می رسد. به عنوان مثال شکل میوه برای طراحی برداشت، جابجایی، حمل و نقل، درجه بندی خودکار و سایر سیستم های فرآوری اهمیت دارد. اندازه گیری سطح میوه برای در نظر گرفتن پوشش آن و همچنین برای انتقال حرارت در فرآیندهای گرم کردن و سرد کردن لازم می باشد همچنین از این عامل برای محاسبه مقدار کل روغن پوست در واریته های مختلف میوه استفاده می شود(6) . میزان تخلخل میوه ها در ذخیره سازی، بسته بندی و تعیین پایداری توده ای میوه ها در برابر جریان هوا حائز اهمیت است. در این پژوهش ، برخی خواص فیزیکی (ابعاد، میانگین هندسی قطر، ضریب کرویت، وزن سی میوه، حجم، دانسیته واقعی، دانسیته توده ای، تخلخل) دو واریته پرتقال در ایران در سطح رطوبتی اولیه(پس از برداشت و مدت کوتاهی انبار شدن) مورد بررسی قرار گرفته است .
مواد و روش ها
آماده سازی نمونه (4)
تامسون ناول و سانگونلا دو واریته رایج پرتقال ایران هستند که جهت تعیین خصوصیات فیزیکی در این پژوهش مورد استفاده قرار گرفتند . نمونه های مورد نیاز در این طرح پژوهشی از مرکز تحقیقات مرکبات رامسر تهیه شدند .
تعیین خصوصیات فیزیکی
وزن هر میوه با استفاده از یک ترازوي ديجيتال با دقت 001/0 ± گرم و نام تجاري Sartoriuse مدل : BL 150 s ساخت آلمان اندازه گیری گردید . جهت تعیین میانگین ابعاد میوه ها ، 30 میوه به طور تصادفی انتخاب شده و دو بعد آنها یعنی طول(L) و قطر D) ( با استفاده از یک میکرومتر با دقت 0.001 میلی متر اندازه گیری شد(8) . سپس میانگین هندسی قطر(Dg) و ضریب کرویت (Φ) با استفاده از فرمول های ذیل محاسبه گردید:(9)
Dg =(Ld2) 0/33
Φ = (Ld2)0/33 / L
دانسیته واقعی میوه ها بصورت نسبت جرم یک میوه به حجم واقعی آن تعریف می شود . حجم واقعی پرتقال ها و دانسیته حقیقی آنها با استفاده از اصل جابجایی مایع بدست آمد . برای این منظور، به جای آب از تولوئن استفاده شد ،چرا که به میزان خیلی کمتری توسط میوه ها جذب می شود، کشش سطحی آن کمتر است، قدرت انحلال کمی دارد، منافذ سطحی میوه ها را پر می کند(12). یکی از روش های جابجایی مایع جهت تعیین حجم واقعی هر نمونه ، استفاده از ترازوی کفه ای است . در این روش حجم واقعی میوه پرتقال از معادله زیر بدست می آید :
V= mdw /pw
که در این معادله
جرم آب جابجا شده ، mdw
دانسیته آب است . pw
سپس دانسیته واقعی میوه پرتقال با استفاده از معادله(4) محاسبه شد .
Pt= m/v
وزن میوه که با ترازو اندازه گیری شد. m
برای اندازه گیری دانسیته توده ای،از ظرفی با وزن و حجم مشخص که از بالا با استفاده از میوه ها پر می شد، استفاده گردید . پرتقال ها با سرعت یکنواخت از ارتفاع 15 سانیتمتری به درون ظرف ریخته می شدند(12). پس از پر شدن ظرف، میوه های اضافی با دو حرکت مارپیچی یک تخته مسطح روی سطح فوقانی ظرف، تخلیه شده بطوری که پرتقال ها فشرده نشوند . سپس ظرف حاوی میوه ها با استفاده از ترازو وزن شده و نسبت وزن میوه های موجود در ظرف به حجم ظرف به عنوان دانسیته توده ای هر واریته در نظر گرفته شد. تخلخل پرتقال هانیز با استفاده از معادله زیر محاسبه شد(12) .
ε={1-pb/pt }×100
دانسیته توده ایpb
دانسیته واقعی pt
تخلخل ε

نتایج و بحث
خواص هندسی:
داده های میانگین و انحراف معیار مربوط به طول، قطر، میانگین هندسی و ضریب کرویت دو واریته پرتقال مورد بررسی( تامسون ناول، سانگونلا ) در جدول(1) آورده شده است .واریته تامسون ناول در تمام موارد بجز کرویت خواص هندسی بالاتری را به خود اختصاص داده است.


جدول 1 : میانگین و انحراف داده های خواص هندسی دو واریته متداول پرتقال در ایران *
ضریب کرویت (%) میانگین هندسی (mm)قطر (mm)قطر (mm)طول واریته
94±3 76/64±4/92 79/80±5/28 80/73±6/26 تامسون ناول
99±5 62/54±2/63 66/55±3/42 62/76±4/49 سانگونلا
*داده های جدول میانگین حداقل 30 تکرار می باشد.
خواص ثقلی
جدول(2) نتایج میانگین و انحراف معیار داده های وزن 30 میوه، حجم، دانسیته واقعی ،دانسیته توده ای و تخلخل دو واریته پرتقال مورد بررسی در این تحقیق را نشان می دهد .
جدول 2 : میانگین و انحراف معیار داده های خواص ثقلی دو واریته متداول پرتقال در ایران *
تخلخل
(%) دانسیته توده ای*
Kg/m3 دانسیته واقعی*
Kg/m3 حجم*
Cm3 وزن 30 میوه
g واریته
52 492 1030/11±26/06 235/6±22/24 260/29±42/72 تامسون ناول
48 531 1029/55±38/78 133±20/51 144/33±21/92 سانگونلا
*داده های حجم، دانسیته واقعی ، دانسیته توده ای میانگین حداقل 10 تکرار می باشند .
نتیجه گیری
اولین گام در جهت تدوین استانداردهای کیفی برای محصولات باغی نظیر پرتقال و همچنین بهبود خطوط مختلف فرآوری این محصول، دانستن ویژگی های متنوع این میوه و تغییرات آنها در اثر عوامل گوناگون است.در این تحقیق برخی از این ویژگی ها مورد یررسی قرار گرفت. طول، قطر، میانگین هندسی قطر، ضریب کرویت، وزن سی میوه، حجم، دانسیته واقعی، دانسیته توده ای، تخلخل برای واریته سانگونلا به ترتیب62/76 ، 66/55 ،62/54 ، 99٪ ،144/33 ، 133 ،1029/55 ، 531 ، 48 ٪ و برای واریته تامسون ناول به ترتیب: 80/73 ، 79/80 ، 76/64 ، 93٪ ، 260/29 ، 235/6 ، 1030/11 ، 492 ، 52٪. بدست آمد.
منابع
1- آصفی، رضا فتوحی قزوینی و یوسف اوغلی . 1383 . پژوهشنامه علوم کشاورزی . دانشکده کشاورزی دانشگاه گیلان . جلد 1 ، شماره 2 ، صفحه 9-1
2- ابرهیمی ، یونس . 1359 . سیر تکاملی مرکبات در ایران . نشریه موسسه تحقیقات اصلاح و تهیه نهال بذر
3- ابراهیمی ، یونس . 1363 . درسنامه مرکبات . دانشگاه تربیت مدرس
4- فتوحی قزوینی ، رضا و جواد فتاحی مقدم . 1385 . پرورش مرکبات در ایران . انتشارات دانشگاه گیلان
5- محمدی ، حمید ، خبات قادری و زکریا فرج زاده . 1384 . بررسی صادرات محصولات باقی در ایران : مطالعه موردی پرتقال . خلاصه مقالات اولین همایش و جشنواره ملی مرکبات . 5-4 بهمن . ساری
6- مرتضوی ، سید علی و سید حمید رضا ضیاءالحق . 1383 . فناوری فرآوری و فرآورده های جانبی مرکبات . ترجمه انتشارات دانشگاه فردوسی مشهد .
7- آمارنامه کشاورزی وزارت کشاورزی . 1383 . جلد اول

8- anony mosa (1989 ) . Analytical methods. Varian Australia. Ltd. Musgrave Victoria, No. 85, Australia.
9- Baryeh, E. A. (2001). Physical properties of Bambara groundnuts. Journal of food engineering, 47 (4), 321-326.
10- Grigelmo – Miguel. n., & Martin – belloso, o. (1999). Characterization of dietary fiber from orange juice extraction. Food research International, 31 (5) 355-361.
11- Favier, j. c., Ripert, j. Toque, c., & Feinberg, m. (1995). Repertoire general des aliments (p . 703 ) (second ed . ) Paris: Irradiation.
12- Mohsenin, n. n. (1980). Physical properties of plant and animal materials. New York: Gordon and breach science publishers.
مصرف کننده ، تخصص ، مشارکت

سایر مقالات
مقاله قبلی انگور ميوه اي ناشناخته و شفابخش ماست بیوفودی برای سلامتی مقاله بعدی
بی‌شک دیدگاه هر کس نشانه‌ی تفکر اوست، ما در برابر نظر دیگران مسئول نیستیم